Monthly Archives: February 2019

Evolutionary game theory with time constraints

Classic matrix models of evolutionary game theory assume that all interactions between strategies/phenotypes take the same amount of time. Here we are developing a new methodology to study models where interaction times depend on the two interacting strategies. We apply this theory to some classic evolutionary games. E.g., the classic Hawk-Dove game predicts that when interaction cost between two Hawks is low, the only evolutionarily stable strategy is all Hawks. In other words, when cost of aggressiveness is low, all individulas will be aggressive. However, when Hawk-Hawk interactions take long enough time, when compared with duration of other interactions, aggressiveness evolves even when the cost of fighting is low. For the repeated Prisoner’s dilemma, cooperation evolves if individuals opt out against defectors. This means that if a cooperator meets another cooperators, they will stay together as long as possible. However, if a cooperator meets a defector, it will play the game only once and then the pair will disband.

Krivan, V., Cressman, R. 2017. Interaction times change evolutionary outcomes: Two-player matrix games. Journal of theoretical biology 416:199-2017

Krivan,V., Galanthy, T., Cressman, R. 2018. Beyond replicator dynamics: From frequency to density dependent models of evolutionary games. Journal of theoretical biology 455:232-248

Cressman, R., Krivan, V. 2019. Bimatrix games that include interaction times alter the evolutionary outcome: The owner-intruder game. Journal of theoretical biology 460:262-273.

Evolutionary game theory

Evolutionary game theory is mathematical expression of Darwin’s theory. This theory explained e.g., evolution of aggressivity (Hawk-Dove game), evolution of cooperation (Prisoner’s dilemma). These models, as many others, are described by a payoff matrix. Solutions are then thought in the form of evolutionarily stable strategies, or Nash equilibria. Evolutionarily stable strategies, in contrast to the Nash equilibria, are stable with respect to invasion by small quantities of mutants playing a different strategy, realized in biology by a different pheno/genotype.

Mate-finding Allee effect

Allee efekt díky páření je nejpozorovanějším typem Allee efektu, jak se můžeme přesvědčit v tomto článku. Vzniká díky snížené schopnosti jedinců nalézt si partnera v populacích s nižší hustotou, což například v případě rostlin může znamenat, že pylovému zrnku se nepodaří dostat k samičím reprodukčním orgánům. V rámci našeho výzkumu se snažíme prostřednictvím matematických modelů zjistit, jak je síla tohoto Allee efektu určena různými prvky pářícího procesu, jako je například počet možných partnerů, rychlost hledání partnera či heterogenita populace. Zajímá nás také, jak lze tento Allee efekt efektivně využít při kontrole škůdců, ať už samostatně či s podporou jiných mechanismů vedoucích na Allee efekt. Aktuální práci na toto téma je možné najít v článku:

Berec, L. (2018). Mate search and mate-finding Allee effect: on modeling mating in sex-structured population models. Theoretical Ecology 11:225-244.

Allee effect

Allee efekt (česky též Alleeho jev), nese jméno amerického behaviorálního ekologa Wardera C. Alleeho. Tento jev nastává, pokud (průměrná) zdatnost jedince v populaci roste s velikostí či hustotou této populace. Jedná se tedy o jev na úrovni celé populace, nikoli na úrovni jedince. Jedná se tedy o pozitivní hustotní závislost. Mechanismů, které vedou k Allee efektu je celá řada. Větší šance si ve větších populacích nalézt partnera, vyhnout se predaci, společně se bránit či hledat potravu, nebo si přetvořit prostředí, a tím zvýšit svou zdatnost, patří k těm nejznámějším. Allee efekt může být způsoben i člověkem, je-li populace intenzivněji lovena při nižších početnostech či hustotách. Může být také důsledkem genetických mechanismů jako je drift či snížení zdatnosti příbuzenským křížením. Řada mechanismů může působit i současně: přehled uvedených i dalších mechanismů a jejich interakcí je možné najít v tomto článku.

Ve vědecké literatuře se můžeme setkat také s výrazy positive density dependence, inverse density dependence, undercrowding či depensation. Všechny tyto pojmy odrážejí fakt, že Allee efekt je vlastně opakem vnitrodruhové konkurence svázané s pojmy (negative) density dependence, overcrowding či compensation. Klasický pohled ekologů první poloviny 20. století na populační růst totiž tvrdil, že díky vnitrodruhové konkurenci je populační růst přepočtený na jednoho jedince nejvyšší při nízkých populačních hustotách a s rostoucí hustotou populace klesá. Warder Clyde Allee však mimo jiné ukázal, že populace karasů zlatých roste rychleji, je-li v akváriu přítomno více jedinců. Allee efekt tak vlastně zosobňuje myšlenku, že přítomnost dalších jedinců stejného druhu může zdatnost každého jedince naopak zvýšit a že populační růst přepočtený na jednoho jedince nemusí být při nízkých populačních hustotách zdaleka nejvyšší. Ve skutečnosti může být růstová rychlost populace při nízkých populačních hustotách dokonce záporná. Taková situace pak indikuje přítomnost určité kritické hodnoty populační hustoty či velikosti, nutné pro existenci životaschopné populace. Krátký, avšak výstižný výklad pojmu Allee efekt je možné nalézt například zde.

Allee efekt má dalekosáhlé důsledky v aplikované ekologii. Už jsme se zmínili o možnosti vzniku Allee efektu díky neuváženému lovu. Vzniká-li díky jakémukoliv Allee efektu kritická hodnota populační hustoty či velikosti, nutná pro existenci životaschopné populace, pak je v případě lovu, ale i ochrany ohrožených populací nezbytně nutné udržovat velikost populace nad takovou hodnotou. V případě otázky kontroly škůdců či invazních druhů však můžeme tuto myšlenku obrátit. Podaří-li se nám totiž snížit jejich hustotu pod případnou kritickou hodnotu, populace škůdců či invazních druhů s velkou pravděpodobností vyhyne, aniž bychom museli zahubit jejího posledního jedince. Více o této problematice je možné nalézt například v tomto článku. Jedním z praktických příkladů, jak také můžeme Allee efekt v populaci vytvořit, je vypouštění sterilních samců. Samice pak “plýtvají” své reprodukční příležitosti na neplodných samcích, velikost populace klesá a po dosažení kritické populační hustoty populace směřuje k vymření. Matematické základy této metody jsou popsány například zde.