Category Archives: General topic

Sexually transmitted diseases

Sexually transmitted diseases are not just a matter of humans, but at a much larger scale also a matter of animals. By definition, pathogens responsible for these diseases are transmitted through the sexual intercourse, in contrast to the other pathogens that are transmitted by another medium (air, water, soil) or other contact than the sexual one. Sexually transmitted diseases have a number of features that distinguish them from the other infections. If they are harmful, then they often reduce reproductive abilities of their hosts (are sterilizing) rather than increasing their mortality. Sexual transmission is also often accompanied by vertical transmission (transmission of pathogens from mother to child during pregnancy), which is usually not the case of the other diseases. A very nice introductory article about ecology and evolution of sexually transmitted diseases is Antonovics et al. (2011).

A special type of contact defining transmission of sexually transmitted diseases, that is, sexual intercourse, determines the transmission rate, i.e. the number of healthy individuals that get infected per unit time. In animals is dynamics of sexual contacts determined by dynamics of mating. Probably in most animals the aim of mating is an offspring production, and mating dynamics thus determines reproduction dynamics. In other words, the processes of host reproduction and transmission of sexually transmitted pathogens are related by mating dynamics, as opposed to other infections where these two processes are not correlated (with the exception of vertical transmission where reproduction directly determines vertical transmission). The critical element for modelling dynamics of sexually transmitted diseases is thus a submodel of mating dynamics, which depends on a specific mating system and includes elements such as encounter rate between males and females, sexual selection or an ability to mate repeatedly (with the same or other partner). Some basic models of mating dynamics can be found in Berec (2018) or Caswell & Weeks (1986).

Two characteristics, that were, based mostly on mathematical modelling, long considered typical for sexually transmitted pathogens, are an ability of such pathogens to fully sterilize their hosts (if able to sterilize) and pathogen adaptation to become cryptic (so that infection cannot be seen on the host). Since not always these two predicted characteristics agree with actual observations, we use mathematical models to look for mechanisms that lead to only partial sterilization and crypticity.

Evolutionary game theory

Evolutionary game theory is mathematical expression of Darwin’s theory. This theory explained e.g., evolution of aggressivity (Hawk-Dove game), evolution of cooperation (Prisoner’s dilemma). These models, as many others, are described by a payoff matrix. Solutions are then thought in the form of evolutionarily stable strategies, or Nash equilibria. Evolutionarily stable strategies, in contrast to the Nash equilibria, are stable with respect to invasion by small quantities of mutants playing a different strategy, realized in biology by a different pheno/genotype.

Allee effect

Allee efekt (česky též Alleeho jev), nese jméno amerického behaviorálního ekologa Wardera C. Alleeho. Tento jev nastává, pokud (průměrná) zdatnost jedince v populaci roste s velikostí či hustotou této populace. Jedná se tedy o jev na úrovni celé populace, nikoli na úrovni jedince. Jedná se tedy o pozitivní hustotní závislost. Mechanismů, které vedou k Allee efektu je celá řada. Větší šance si ve větších populacích nalézt partnera, vyhnout se predaci, společně se bránit či hledat potravu, nebo si přetvořit prostředí, a tím zvýšit svou zdatnost, patří k těm nejznámějším. Allee efekt může být způsoben i člověkem, je-li populace intenzivněji lovena při nižších početnostech či hustotách. Může být také důsledkem genetických mechanismů jako je drift či snížení zdatnosti příbuzenským křížením. Řada mechanismů může působit i současně: přehled uvedených i dalších mechanismů a jejich interakcí je možné najít v tomto článku.

Ve vědecké literatuře se můžeme setkat také s výrazy positive density dependence, inverse density dependence, undercrowding či depensation. Všechny tyto pojmy odrážejí fakt, že Allee efekt je vlastně opakem vnitrodruhové konkurence svázané s pojmy (negative) density dependence, overcrowding či compensation. Klasický pohled ekologů první poloviny 20. století na populační růst totiž tvrdil, že díky vnitrodruhové konkurenci je populační růst přepočtený na jednoho jedince nejvyšší při nízkých populačních hustotách a s rostoucí hustotou populace klesá. Warder Clyde Allee však mimo jiné ukázal, že populace karasů zlatých roste rychleji, je-li v akváriu přítomno více jedinců. Allee efekt tak vlastně zosobňuje myšlenku, že přítomnost dalších jedinců stejného druhu může zdatnost každého jedince naopak zvýšit a že populační růst přepočtený na jednoho jedince nemusí být při nízkých populačních hustotách zdaleka nejvyšší. Ve skutečnosti může být růstová rychlost populace při nízkých populačních hustotách dokonce záporná. Taková situace pak indikuje přítomnost určité kritické hodnoty populační hustoty či velikosti, nutné pro existenci životaschopné populace. Krátký, avšak výstižný výklad pojmu Allee efekt je možné nalézt například zde.

Allee efekt má dalekosáhlé důsledky v aplikované ekologii. Už jsme se zmínili o možnosti vzniku Allee efektu díky neuváženému lovu. Vzniká-li díky jakémukoliv Allee efektu kritická hodnota populační hustoty či velikosti, nutná pro existenci životaschopné populace, pak je v případě lovu, ale i ochrany ohrožených populací nezbytně nutné udržovat velikost populace nad takovou hodnotou. V případě otázky kontroly škůdců či invazních druhů však můžeme tuto myšlenku obrátit. Podaří-li se nám totiž snížit jejich hustotu pod případnou kritickou hodnotu, populace škůdců či invazních druhů s velkou pravděpodobností vyhyne, aniž bychom museli zahubit jejího posledního jedince. Více o této problematice je možné nalézt například v tomto článku. Jedním z praktických příkladů, jak také můžeme Allee efekt v populaci vytvořit, je vypouštění sterilních samců. Samice pak “plýtvají” své reprodukční příležitosti na neplodných samcích, velikost populace klesá a po dosažení kritické populační hustoty populace směřuje k vymření. Matematické základy této metody jsou popsány například zde.