The habitat selection game is a game theoretical concept that describes species distribution in22 heterogeneous environments. For a single population, Fretwell and Lucas (1970) defined the Ideal Free Distribution (IFD) in patchy environments, under which animal payoffs in all occupied patches are the same and maximal. Thus, the IFD is a Nash equilibrium of a game that we call the Habitat Selection Game. As any strategy that uses only already occupied patches will get the same fitness at the Nash Equilibrium, it is not clear if the Ideal Free Distribution is stable with respect to mutant invasions. Cressman and Krivan (2006) proved that the IFD is also an Evolutionarily Stable Strategy, i.e., resistant to mutant strategies. The habitat selection game was extended to two and multiple species. The IFD for two competing species in a two-patch environment was derived by Krivan and Sirot (2002). Cressman et al (2004) proved that this two-species IFD is also an Evolutionarily Stable Strategy for two populations. The effects of the IFD on population dynamics of two competing species was studied by Abrams et al. (2007). Evolutionarily stability under population dynamics were considered for multiple populations by Krivan and Cressman (2009) and for a single population by Cressman and Krivan (2010). Many results on habitat selection game for competing species or predator-prey interactions were reviewed in Krivan et al. (2008).
Habitat selection game
Leave a Reply